
Proton++: A Customizable Declarative
Multitouch Framework

Kenrick Kin1,2 Björn Hartmann1 Tony DeRose2 Maneesh Agrawala1

1University of California, Berkeley 2Pixar Animation Studios

ABSTRACT
Proton++ is a declarative multitouch framework that allows
developers to describe multitouch gestures as regular expres-
sions of touch event symbols. It builds on the Proton frame-
work by allowing developers to incorporate custom touch at-
tributes directly into the gesture description. These custom
attributes increase the expressivity of the gestures, while pre-
serving the benefits of Proton: automatic gesture matching,
static analysis of conflict detection, and graphical gesture cre-
ation. We demonstrate Proton++’s flexibility with several ex-
amples: a direction attribute for describing trajectory, a pinch
attribute for detecting when touches move towards one an-
other, a touch area attribute for simulating pressure, an orien-
tation attribute for selecting menu items, and a screen location
attribute for simulating hand ID. We also use screen location
to simulate user ID and enable simultaneous recognition of
gestures by multiple users. In addition, we show how to in-
corporate timing into Proton++ gestures by reporting touch
events at a regular time interval. Finally, we present a user
study that suggests that users are roughly four times faster at
interpreting gestures written using Proton++ than those writ-
ten in procedural event-handling code commonly used today.

Author Keywords
Proton++, custom attributes, touch events symbols, regular
expressions, gesture tablature

ACM Classification Keywords
D2.2 Software Engineering: Design Tools and Techniques;
H5.2 Information Interfaces & Presentation: User Interfaces

INTRODUCTION
Multitouch gestures can be based on a wide range of touch
attributes. At a basic level, each gesture is a sequence of
touch events (touch-down, touch-move, touch-up). In ad-
dition, developers frequently consider the trajectory of the
touches and the timing between the events. New multitouch
devices have extended the set of touch attributes to include
touch area, touch orientation, finger ID, and user ID. In some
cases, applications also derive higher-level attributes such as
pressure from lower-level attributes like touch area. Each
such attribute increases the expressivity and design space of
multitouch gestures.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’12, October 7–10, 2012, Cambridge, Massachusetts, USA.
Copyright 2012 ACM 978-1-4503-1580-7/12/10...$15.00.

Incorporating touch attributes into the event-handling code
common in today’s procedural multitouch frameworks com-
plicates the already difficult task of writing correct gesture
recognition code. In these frameworks, developers write
event handlers that consider the sequence of touch events and
attributes for each gesture. Keeping track of gesture state
across many different callbacks leads to spaghetti code that
is difficult to understand and maintain. Developers must also
detect and resolve conflicts between gestures. Conflicts occur
whenever a sequence of touch events partially match multiple
gestures (e.g., two touches could represent a rotation gesture
or a pinch-to-zoom gesture). Current event-handling frame-
works force developers to detect such conflicts at runtime
through trial-and-error testing.

Recent multitouch frameworks have sought to simplify the
creation of multitouch gestures by allowing developers to de-
scribe gestures declaratively [14, 30] rather than in procedu-
ral event-handling code. Proton [16] is one such framework,
which represents multitouch gestures as regular expressions
composed of touch event symbols. From these expressions,
Proton automatically generates gesture recognizers and pro-
vides static analysis of gesture conflicts. This approach re-
duces the code complexity of event callbacks and facilitates
the development and maintenance of gesture sets. However,
Proton only considers basic touch event sequences that con-
tain touch ID, touch action (down, move, up), and touch hit-
target. It does not support other common attributes such as
trajectory, touch area, finger ID, or timing. Finally, Proton is
limited to detecting a single gesture at a time.

We present Proton++, an extension to Proton that allows de-
velopers to define custom touch attributes and incorporate
them into declarative gesture definitions. We demonstrate
the benefits of customization with example implementations
of five attributes: a direction attribute for specifying touch
trajectory (Figure 1a,b), a pinch attribute for detecting when
touches move towards one another, a touch area attribute for
simulating pressure, a finger orientation attribute that pro-
vides an additional parameter for selecting menu items, and a
screen location attribute for simulating hand ID and user ID.
We show that such customization allows for more expressive
gestures while retaining the automatic generation of recog-
nizers and conflict detection capabilities of Proton.

To facilitate authoring gestures with custom attributes, Pro-
ton++ adds attribute notation to the gesture regular expres-
sions and graphical gesture tablature of Proton (Figure 1c-e).
Proton++ also allows developers to declaratively specify tim-
ing within a gesture by reporting touch events at a regular
time interval. In addition, Proton++ allows developers to split
the input touch event stream by attribute values. Proton++

Figure 1. In Proton++ the developer can specify a custom touch direction attribute. (a) The direction is computed by taking the vector formed by the
last two positions of the touch and (b) binning it to one of the four cardinal directions. Combining the hit-target and direction attributes, the developer
can specify a gesture to translate a star (denoted as ‘s’) with varying degrees of specificity: (c) north only, (d) north and south only, (e) in any direction.

can then process each stream independently in parallel and
thereby detect multiple simultaneous gestures. We show how
such stream splitting enables multiuser applications in which
each user can perform gestures at the same time.

Finally, we contribute a user study that investigates how
quickly and accurately developers recognize and reason
about gestures described using gesture regular expressions,
gesture tablatures, and iOS-style procedural event-handling
pseudocode. We find that developers correctly recognize
gesture tablatures the fastest of all three gesture descrip-
tions; tablatures are 2.0-2.1 times faster than expressions
and 4.2-4.7 times faster than event-handling code. These
results suggest that developers are able to more quickly read
and understand Proton++ tablatures than expressions and
event-handling code.

RELATED WORK
Proton++ builds on a history of frameworks for modeling in-
put. Its custom touch attributes enable recognition of rich, nu-
anced gestures. We first review work on describing gestures
using formal grammars and declarative frameworks. We then
survey related work on interaction techniques that leverage
touch attributes.

Describing Multitouch Gestures
Proton++ describes multitouch gestures with regular expres-
sions. Regular and context-free languages have been used
to model interactions since early work by Newman [24] and
Olsen and Dempsey [25]. More recently, CoGesT [10] uses
context-free grammars to formally describe conversational
hand gestures; GeForMt [13] also uses context-free grammars
to model multitouch gestures. Neither system provides recog-
nition capabilities. Gesture Coder [19] recognizes multitouch
gestures with state machines, which are equivalent to regu-
lar expressions. While Proton++ and Gesture Coder share a
recognition approach, their interfaces for authoring gestures
differ significantly: developers demonstrate gestures in Ges-
ture Coder; they author gestures symbolically using tablatures
and regular expressions in Proton.

In addition to using formal languages, researchers have also
developed other declarative frameworks for specifying multi-
touch gestures. In rule-based frameworks such as GDL [14]
and Midas [30], developers author gestures based on spatial
and temporal attributes (e.g., number of touches, touch trajec-
tory, etc.). However, to identify conflicts between gestures,
developers must rely on runtime testing. In contrast, Pro-
ton++’s underlying regular expression formalism enables au-
tomatic conflict detection between gestures at compile time.

Proton++ improves upon Proton [16] by increasing the flex-
ibility of the framework. Proton++ allows the developers to
customize touch events and expand the space of gestures that
can be declaratively represented. In addition, Proton++ lifts
the restriction of matching one gesture at a time, by splitting
the touch stream into parallel streams with separate gesture
matchers. Lastly, Proton++ encodes timing into the touch
symbols, so gesture expressions can directly indicate the du-
ration of touch sequences.

Leveraging Touch Attributes
Researchers have used touch attributes provided by multi-
touch hardware to design a wide range of gestures and appli-
cations. We survey representative techniques that use touch
positions to create trajectory-dependent gestures, touch shape
to increase the design space of gestures, and touch identity to
track hands and users in multiuser applications.

Trajectory
Trajectory recognition systems consider touch positions over
time. Recognition has been based on comparison to demon-
strations [29, 38], and on regular expression matching to a
string representation of a gesture [39]. These recognizers can
only classify trajectory after the user has completed the ges-
ture. Some systems detect trajectory online, as the user per-
forms the gesture. Bevilacqua et al. [4] use a hidden Markov
model to perform gesture following and Swigart [32] detects
trajectory as a sequence of directions formed by the last two
positions of the touch. Proton++ takes a similar approach to
Swigart and incorporates direction attributes into touch event
symbols. Researchers have used touch trajectories to disam-
biguate widget selection [23], to implement multitouch mark-
ing menus [15, 18], and to detect stroke commands [1].

Touch Shape
All multitouch devices detect position of touches, but many
devices also detect touch shape [12, 21, 27, 28, 34]. Re-
searchers have used hand shape in multitouch applications to
distinguish between different operations based on analogies
to real-world manipulations [5], to control physics simula-
tions [36], to constrain degrees of freedom in shape manipu-
lation [35] and to distinguish commands in multi-user appli-
cations [40]. Touch area can be extracted from touch shape,
which researchers have used to simulate applied pressure
when selecting and manipulating objects [3, 5]. Pressure-
sensitive widgets designed for stylus input can also be im-
plemented using touch area [26]. Researchers have extracted
touch orientation from touch shape by fitting an ellipse to the
shape and calculating the angle of its major axis [6, 33]; they

Figure 2. In Proton++, the developer provides the attribute genera-
tors (red) that assign attribute values to symbols in the touch event
stream. The developer still provides the gestures and confidence cal-
culators (blue) as in Proton.

use orientation as an additional parameter for object manipu-
lation and command selection. With Proton++ developers can
integrate touch area and orientation into gesture expressions
to detect and execute similar interaction techniques.

Hand and User Identification
Most multitouch devices cannot distinguish the sources of
touches, such as from which finger, hand, or person the touch
originated. Researchers have augmented multitouch systems
with additional vision tracking of hands [7]. With hand iden-
tity, developers can assign different gestures and roles to each
hand, as promoted by Guiard’s Kinematic Chain Model [11].
The DiamondTouch [20] table identifies users through capac-
itive coupling between the touch surface and a pad on each
user’s chair. User identity has enabled researchers to develop
cooperative gestures for multiple users [22] and player track-
ing for multiplayer games [8]. Proton++ can integrate hand
and user identity into touch events. Since most devices can-
not identify hands or users without additional hardware, we
describe a heuristic for identifying hands and users based on
the screen location of a touch.

PROTON++ ARCHITECTURE AND NOTATION
Proton++ extends the architecture and notation introduced by
Proton, while maintaining the gesture matching and conflict
detection capabilities of that earlier system. As shown in Fig-
ure 2, Proton++ consists of a stream generator that converts
touch events into a stream of symbols, a gesture matcher that
compares the touch event stream against a set of gesture regu-
lar expressions, and a gesture picker that chooses the best ges-
ture when multiple gestures match the user’s actions. The de-
veloper must provide attribute generators that assign attribute
values to the touch events, a set of gesture regular expres-
sions with associated callbacks that describe each gesture the
system should recognize, and confidence calculators to help
the gesture picker choose the best gesture. The main archi-
tectural differences between Proton++ and Proton are in the
stream and attribute generation. In this paper we focus on de-
scribing these two components of the Proton++ architecture.
Detailed explanations of the other components can be found
in Kin et al. [16].

A Proton++ touch event consists of a touch action (down,
move, up), a touch ID (first, second, third, etc.) and a series
of touch attribute values (e.g., direction = NW, hit-target =
circle, etc.). Proton++ allows developers to customize touch
events with additional touch attributes. Such customization
requires writing attribute generators that map hardware touch
information (e.g., position, pressure, finger area, etc.) to dis-
crete attribute values. We describe implementations of several
different types of attribute generators in the next section.

Figure 3. The Proton Syntax. Left: Tablature nodes correspond to dif-
ferent touch symbols. Right top: Tablature lines correspond to move
symbols. Right bottom: An attribute wildcard expands into a disjunc-
tion of all values of an attribute.

The stream generator converts each touch event into a touch
symbol of the form:

EA1:A2:A3...
TID

where E ∈ {D,M,U} is the touch action, TID is the touch
ID and A1 : A2 : A3..., are the attribute values, where A1 is
the value corresponding to the first attribute, A2 is the value
corresponding to the second attribute, and so on. For exam-
ple, Ms:W

1 represents move-with-first-touch-on-star-object-
in-west-direction. We use the ‘s’ attribute value to represent
the star-object hit-target and the ‘W’ attribute value to repre-
sent west-direction.

A gesture is a regular expression over these touch event sym-
bols. For example, the expression Ds:N

1 Ms:N
1 *Us:N

1 de-
scribes a one-finger northward motion on the star object (Fig-
ure 1c). The Kleene star ‘*’ indicates that the move sym-
bol Ms:N

1 can appear zero or more consecutive times. Of-
ten a gesture allows for certain attributes to take on one
of several values. The developer can use the ‘|’ charac-
ter to denote the logical or of attribute values. For exam-
ple, the expression D

s:N |S
1 M

s:N |S
1 *Us:N |S

1 extends the pre-
vious gesture to allow both north and south motions (Fig-
ure 1d). Proton++ expands the ‘|’ shorthand into the full
regular expression (Ds:N

1 |Ds:S
1)(Ms:N

1 |Ms:S
1)*(Us:N

1 |Us:S
1).

Proton++ also allows developers to use the ‘•’ character to
denote a wildcard which specifies that an attribute can take
any value, effectively ignoring the attribute during match-
ing. For example, if the direction attribute A2 can take the
set of values {N,S,E,W}, the expression Ds:•

1 Ms:•
1 *Us:•

1
describes any one-finger trajectory on the star object (Fig-
ure 1e). In this expression, the symbol Ms:•

1 expands to
Ms:N

1 |Ms:S
1 |Ms:E

1 |Ms:W
1 .

In addition to using regular expressions, developers can de-
scribe gestures using the gesture tablature graphical nota-
tion (Figure 1c-e). In gesture tablature, each touch is rep-
resented as a horizontal track. Green nodes represent touch
down events and red nodes represent touch up events. The
attributes associated with each touch event are listed above
the corresponding nodes. Tablature uses the same shorthand
as regular expressions for specifying multiple attribute val-
ues (‘|’ characters and ‘•’ wildcards). The black lines con-
necting nodes represent an arbitrary number of touch move
events and inherit the attributes of the preceding node. Ad-

Figure 4. (a) The space of directions is divided into eight ranges rep-
resenting the four cardinal and four ordinal directions. (b) The vector
formed by the last two touch positions is binned to the closest direction.
(c) An L-shaped gesture generates south (‘S’) then east (‘E’) symbols.

ditionally, developers can insert gray and white nodes into
a touch track. These nodes represent required and optional
touch move events, respectively. The developer can use these
nodes to change the attribute values associated with a touch.
Figure 3 summarizes the mapping between between tablature
nodes and expression symbols. Vertically aligned nodes in-
dicate that the corresponding touch events can occur in either
order. Tablature uses the same shorthand as regular expres-
sions for specifying multiple attribute values.

A developer can add triggers to gesture expressions or tabla-
tures to receive callback notifications. In Figure 1c-e, triggers
are shown as blue arrows with the associated callback func-
tion name. Triggers are executed when the gesture matcher
reaches their positions in an expression or tablature and they
allow developers to provide feedback during a gesture.

CUSTOM ATTRIBUTES
To add a new custom attribute in Proton++, the developer
must write and register an attribute generator. On each touch
event, the attribute generator receives the touch data reported
by the hardware sensors, along with the entire sequence of
previous touch symbols from the stream generator. It then
computes an attribute value based on this information and ap-
pends it to the current touch event symbol. Since Proton++
is based on regular expressions composed of discrete touch
symbols, the primary constraint on the attributes is that they
must take discrete values. Thus, attribute generators are of-
ten responsible for quantizing continuous-valued parameters
to convert them into attribute values suitable for Proton++.

We have implemented five example attribute generators that
produce such discrete attributes and demonstrate the flexi-
bility of our approach: (1) a direction attribute for describ-
ing touch trajectory, (2) a pinch attribute for detecting when
touches move towards one another, (3) a touch area attribute
for simulating pressure, (4) a finger orientation attribute for
selecting menu items, and (5) a screen location attribute for
simulating hand ID and user ID. The direction and screen lo-
cation attributes are based on touch position and can work
with any multitouch device. Our implementations of the
touch area and finger orientation attributes require additional
touch information which we obtain from a Fingerworks iGes-
ture Pad [34].

Direction Attribute
The direction attribute allows developers to describe a touch
trajectory within a Proton++ gesture expression. Since at-
tribute values must be discrete, we bin the space of all direc-

Figure 5. Proton++ continuously tracks the trajectory of the second
touch, which allows the developer to provide continuous feedback de-
pending on whether the touch moves east-west (scale in x-axis) or north-
south (scale in y-axis).

tions into eight ranges representing the four cardinal and four
ordinal directions seen in a compass (Figure 4a). To gener-
ate this attribute we compute the vector p1 − p0, between the
previous touch position p0 (as given by the previous touch
event with the same touch ID) and the current touch position
p1. Our direction attribute generator then returns the direc-
tion bin containing the vector (Figure 4b). If the touch has
not moved beyond a distance threshold, the generator outputs
an ‘O’ value. We use a threshold of five pixels.

Trajectory. A sequence of direction attributes describes a ges-
ture trajectory. For example, in an L-shaped gesture (Fig-
ure 4c), the touch first moves in the S direction and then in
the E direction. The expression to detect this trajectory is
thus: DO

1 M
S
1 M

S
1 *ME

1 ME
1 *UE

1 . In practice we have found
that users often slow down at the beginning of the trajectory
or when making the turn from S to E, and the gesture expres-
sion fails if the user hesitates in this manner. To allow the
user to hold a touch position at any point along the trajectory,
we modify the expression to include symbols with direction
attribute value ‘O’: DO

1 M
O
1 *MS

1 M
O|S
1 *ME

1 M
O|E
1 *UO|E

1 .
Note that this gesture expression requires users to execute a
perfect right-angle turn. In the section on timing we will de-
scribe how we can extend such trajectory-based gestures to
allow imprecise turns.

Unlike many recognition systems that detect trajectory at the
end of the gesture [29, 38], Proton++ continuously tracks the
trajectory as the user performs the gesture. Thus, develop-
ers can provide continuous feedback. For example, a shape
manipulation application might include a gesture where one
touch selects the shape, and a second touch must move E-W
to scale the shape along the x-axis or move N-S to scale the
shape along the y-axis with continuous feedback (Figure 5).
Providing such immediate feedback is an essential feature for
direct manipulation interfaces [31].

Pinch Attribute
A pinch in which two or more touches move towards each
other is a commonly used gesture in multitouch applications.
While the previous direction attribute evaluated the move-
ment of an individual touch, the pinch gesture is based on
on the relative movements of multiple touches. Our pinch at-
tribute generator computes the average distance between each
touch and the centroid of all the touches. It compares this av-
erage distance to the average distance computed for the pre-
vious touch event and if it decreases the generator assigns

Figure 6. (a) Touches are assigned a ‘P’ when on average the touches
move towards the centroid, an ‘S’ when the touches move away from the
centroid, and an ‘N’ when they stay stationary. (b) A two-touch gesture
that zooms out on a pinch and zooms in on a spread.

Figure 7. (a) A touch with small (‘sm’) area translates only the topmost
card. (b) A touch with large (‘lg’) area translates the entire stack.

the touch the attribute value ‘P’ for pinching. If the aver-
age distance increases it assigns the touch the value ‘S’ for
spreading, and if there is no change in average distance it as-
signs the value ‘N’ (Figure 6a). We use the pinch attribute
to describe a two-touch zoom gesture as shown in Figure 6b.
Our approach considers all touches together as a whole and
cannot distinguish when only a subset of touches are pinch-
ing. For example, if two touches are locally pinching, but
moving away from a stationary third touch, this attribute may
report the touches as spreading. An alternative approach is
to generate an attribute that encodes the pairwise pinch rela-
tionships of all possible touches, so the developer can then
specify which pairs of touches must be involved in the pinch.

Touch Area Attribute
Many multitouch devices such as the Fingerworks iGesture
Pad [34] report the touch area, the contact area between a
finger or hand and the device, as a continuous value. Our
attribute generator quantizes the size of the touch area to two
discrete values, small and large. Precisely regulating touch
area can be difficult. In practice we found that consistently
generating more than two distinct levels of touch area was
challenging and therefore limited this attribute to two levels.

Simulating Pressure. Although the iGesture Pad cannot de-
tect pressure, we can use touch area to simulate force, us-
ing the approach of ShapeTouch [5]: smaller touch area cor-
responds to lower pressure and larger area corresponds to
stronger pressure. As shown in Figure 7a, a touch on a card
(‘c’) with a small (‘sm’) area M c:sm

1 translates the topmost
card of a stack, while in Figure 7b, a touch on a card with
a large (‘lg’) area M c:lg

1 translates the entire stack of cards.
One limitation of touch area is that a user’s initial touch area
starts small before it grows into a large area. Thus, when us-

Figure 8. (a) The angle of the major axis of a touch is binned into three
finger orientation values. (b) The dial menu (‘d’) uses orientation to set
the background color of an application.

ing the large touch attribute value, the developer should allow
the touch to begin and end on a small area. In general, the de-
veloper must carefully consider attributes such as area, where
a touch must go through lower attribute values to reach higher
attribute values.

Finger Orientation Attribute
The Fingerworks iGesture Pad provides a continuous orien-
tation value for each touch in the range 0-180◦. We bin the
orientations to three levels as shown in Figure 8a: up (75-
105◦), left (>105◦), and right (<75◦). We define a narrow
range for the up bin so users do not have to awkwardly rotate
their wrist or fingers from their natural positions to reach the
left and right bins. We also minimize the number of orienta-
tion levels so that users can easily perform them.

Selecting Menu Items. We use the finger orientation attribute
to select from a three-state dial menu (Figure 8b). In this
example, the dial sets the background screen color: an up
orientation assigns a white background, a left orientation as-
signs a green background, and a right orientation assigns an
orange background. This dial menu is very similar to a mark-
ing menu [17], but uses finger orientation instead of stroke
direction.

Screen Location Attribute
All multitouch devices provide touch position as a continuous
value with each touch event. The screen location attribute
generator assigns discrete attribute values to touch positions.
Hit testing is one approach for assigning such discrete values;
the attribute value is set to the label of the hit-target, the object
directly under the touch point. Hit testing is the only attribute
generator in Proton [16] and is also available in Proton++. In
addition to using scene objects for hit testing, we can define
other screen regions to generate attribute values.

Hand Identification. Most multitouch devices cannot detect
which hand (left or right) generated a touch event. However,
we can simulate hand ID using the screen location attribute as
a proxy for hand ID. We divide the screen in half, and assign
the attribute value ‘L’ (for left hand) to touches originating
from the left side of the screen. Similarly we assign the value
‘R’ (for right hand) to touches originating from the right side.

We can combine this simulated hand ID attribute with the
direction attribute (Figure 9 Left) to create an ordered two-
handed marking menu [15], in which users must start a stroke
with the left hand and then start a second stroke with the right
hand to select between a large number of menu items. For ex-
ample, the expression and tablature for the left hand drawing
a stroke in the E direction and the right hand drawing a stroke
in the W direction are given in Figure 9.

Figure 9. To simulate hand identification, touches beginning on the left side belong to the left hand and touches beginning on the right side belong to
the right hand. An ordered two-handed marking menu can be described by adding the direction attribute.

Figure 10. In the Pong game, the touch stream is split so one gesture
matcher can process touches from the left player and a second gesture
matcher can process touches from the right player. Both gesture match-
ers use the same gesture for controlling the paddle (‘p’).

SPLITTING THE TOUCH EVENT STREAM
Proton++ recognizes a gesture when the entire touch event
stream matches a gesture regular expression. Each time a
match is found, Proton++ executes the callback associated
with the gesture expression and flushes the stream. Thus,
with a single stream, Proton++ is limited to recognizing at
most one gesture at a time.

However, Proton++ also allows developers to split the touch
event stream by any custom attribute and run a separate ges-
ture matcher on each stream. Such stream splitting allows
Proton++ to recognize multiple simultaneous gestures, as
each matcher can detect a different gesture. We use stream
splitting in combination with a user ID attribute to enable
multiuser applications.

User Identification. Some multitouch devices, such as the
DiamondTouch [20], directly provide a different user ID for
each person interacting with the device. For multitouch de-
vices that do not provide such identification, we can simulate
user ID using the screen location attribute. For example in
a two-player Pong game (Figure 10), touches originating on
the left side of the screen correspond to one user, and touches
originating on the right correspond to a second user. Using
a single stream and gesture matcher would restrict the play-
ers so that only one of them could move their paddle at any
time. Splitting the stream by the location-based user ID re-
moves this restriction. Since each stream has its own gesture
matcher, the system can recognize paddle control gestures
from both players at the same time. In this example the devel-
oper could provide the same set of attributes and gesture ex-
pressions to both gesture matchers. However, Proton++ also
allows developers to register different sets of attributes and
gesture expressions to each gesture matcher.

TIMING
While taps, holds, and flicks are common multitouch ges-
tures, the basic touch event sequence for all three is exactly

the same. To distinguish between these three gestures the ges-
ture recognizer must have access to timing information. We
introduce timing to Proton++ by adding the constraint that the
stream generator reports touch events at a fixed time interval;
we use 1

30s. Thus each touch symbol M•1 also represents a
unit of time t and a sequence of k such symbols represents a
time duration of kt. To express gesture timing, the developer
can replace M•1 *, which matches a touch movement of any
duration, with a fixed-length sequence of M•1 symbols. This
sequence matches only when the touch movement lasts for
the corresponding length of time.

Writing out a fixed-length sequence of move symbols can be
tedious, so we introduce a shorthand for specifying the num-
ber of successive touch-move events using the notation

(MA1:A2:A3...
TID

)t1−t2

which generates the expression that matches t1 to t2
successive MA1:A2:A3...

TID
events. The t2 parameter is

optional. Proton++ expands the shorthand into t1 con-
secutive move symbols if t2 is not specified. It generates
the disjunction of t1 consecutive move symbols to t2
move symbols if t2 is specified. For example, a touch
and hold that lasts at least five consecutive move events
is expressed as D•1(M•1)5M•1 *U•1 , which expands to
D•1M

•
1M

•
1M

•
1M

•
1M

•
1M

•
1 *U•1 . A tap of one to five move

events is expressed as D•1(M•1)1−5U•1 , which expands to
D•1(M•1 |M•1M•1 |...|M•1M•1M•1M•1M•1)U•1 . We also update
the tablature with timing notation as shown in Figure 11a.
The developer can specify a range t1 to t2 within the gray
move nodes.

Using timing to detect a hold, we can design a marking menu
for novice users that visually displays the menu items if the
user holds down a touch for 1

3 of a second. We use the di-
rection attribute and a sequence of 10 touch-move symbols to
specify the 1

3s duration of the hold with the expression shown
in Figure 11b. We associate a menu drawing callback with the
tenth MO

1 .

Our previous L-shaped trajectory example requires the user to
make a perfect right-angle turn from the S direction to the E
direction. We can use timing to allow the user to momentarily
move in any direction during the turn using the expression
show in Figure 11c. The timing is specified in the symbol,
(M•1)1−5, which gives the user up to a 1

6s window to make a
less precise turn.

To capture timing between taps (e.g., double taps), Proton++
utilizes a user-definable timeout as in the original Proton sys-
tem [16]. If the user releases all touches, the user has the

Figure 11. (a) Shorthand for specifying timing in tablature. (b) Novice marking menu using timing notation to specify a touch hold. (c) L-shaped
trajectory using timing to permit an imprecise turn from south to east.

duration of the timeout to place the next touch down and con-
tinue the gesture. If no such touch occurs within the timeout
period Proton++ considers the gesture to have failed. Alter-
natively, we could extend Proton++ to emit a ‘Z’ touch event
symbol whenever there are no touches on the device. Since
each symbol in the stream also represents a unit of time, the
developer could use sequences of the ‘Z’ symbol to specify
the duration between taps.

DESIGNING CUSTOM ATTRIBUTES
We have implemented example applications for the direction,
pinch, touch area, finger orientation, and screen location at-
tributes. We refer readers to the paper video1 for demonstra-
tions of these applications. Based on our experience building
these applications, we distill several design considerations for
creating custom attributes. We then discuss how developers
can design new custom attributes to implement two gestures
sets that have been recently proposed by other researchers.

Levels and Ranges of Attribute Values. Developers should
base the number of levels of an attribute on the specificity
needed by the application. More levels provide developers
with finer-grain control over gesture specifications. However,
more levels also require extra effort to author: developers may
have to carefully write complex disjunctions of attribute val-
ues in the expressions.

The range of input values binned to each attribute value af-
fects users’ ability to perform actions that correspond to each
attribute value. For example, if the range of a direction value
is small, users may find it difficult to accurately draw a stroke
in that particular direction. Noise or variation in user perfor-
mance may cause matching to fail for attribute values with
narrow ranges. Developers should choose ranges such that
users can reliably perform actions for each attribute value.

Attribute Value Traversal. Certain attributes such as touch
area will require traversal through lower attribute values to
reach higher attribute values. Developers should be cognizant
of this possibility and design gestures that allow for such
traversal. Additional developer tools could aid in integrating
these attributes in gestures.

No Asynchronous Attribute Values. Developers must assign
an attribute value to each touch event as soon as it is emit-
ted, within the time interval defined by the stream generator’s
reporting rate. While the history of a touch is available, de-
velopers must not wait for future information to determine an
attribute value. Delaying assignment of attribute values, and
writing expressions that permit such delayed assignments,
1http://vis.berkeley.edu/papers/protonPlusPlus/

would diminish the capacity of Proton++ to distinguish ges-
tures from each other and to detect conflicts.

Application Independent Attributes. To create attributes that
can be reused across multiple applications, attribute genera-
tors should only rely on information contained in the touch
stream received from a hardware device and should not ac-
cess application-specific information. For example, once de-
fined, the direction attribute can be used in any application
with gestures that require directional specification.

Implementing Other Gesture Sets in Proton++. Wobbrock
et al. [37] present a user-defined gesture set for 27 common
multitouch operations. Using Proton++ and our example at-
tributes, the developer can directly implement all but two of
the gestures. The remaining two gestures require more spe-
cialized attributes. Implementing their lasso gesture requires
a distance attribute to differentiate between the longer path of
the lasso and the shorter paths of other trajectory-based ges-
tures, such as their check mark. To implement their ‘X’ ges-
ture the developer could use the Proton++ direction attribute
to detect two touch paths with diagonal trajectories (e.g., one
SE path then one SW path), but would also have to implement
a new intersection attribute that detects when two paths cross.

Freeman et al. [9] present a gesture set containing gestures
similar to those of Wobbrock et al. However, half of the Free-
man gesture set depends on different hand shapes, such as
finger, fist, side of hand, etc. To support these gestures, the
developer could implement a new attribute that distinguishes
between the possible hand shapes. The gesture set also con-
tains a gesture in which the fingers move counter-clockwise.
While the direction attribute generator only uses the last two
positions of a touch to detect direction, a counter-clockwise
attribute generator requires knowledge of the last three posi-
tions of a touch to detect counter-clockwise movements.

USER STUDY
To help us understand whether developers can benefit from
the gesture matching and conflict detection provided by Pro-
ton++, we conducted a user study evaluating how quickly
and accurately developers comprehend gestures described us-
ing regular expressions, tablatures, and iOS-style [2] event-
handling code. We divided the study into two parts, with
the first part focusing on basic gestures that involved only
the sequence of touch events and the second part including
trajectory-based gestures.

We recruited 12 participants (10 male, 2 female, ages between
20 and 51) who were all experienced programmers. Each par-
ticipant performed both parts of the experiment and each part
contained three blocks. Each block focused on one of the

http://vis.berkeley.edu/papers/protonPlusPlus/

Figure 12. Top: In Part 1, the participant is shown a gesture tablature
and the participant must identify the matching video. Bottom: The cor-
responding gesture expression and event-handling pseudocode.

three gesture representations: tablature, expression, and iOS.
We counterbalanced the orderings of the gesture representa-
tions so that each of the six possible orderings was performed
by two participants.

Part 1: Basic Touch Event Sequences
The first part of the study tested how each gesture represen-
tation affects the participant’s understanding of basic touch
event sequences in a gesture. Gestures are often dependent
on the target of the touches, so we also included a single hit-
target attribute: the type of target hit by the touch.

At the start of each block, we gave the participant a tutorial
on how to interpret a multitouch gesture using the block’s
gesture representation. We then asked the participant to per-
form five gesture identification trials. The gestures were cho-
sen such that each block covered a range of different gestures
with one, two, and three touches. For each trial, we presented
the participant with a gesture written in the block’s gesture
representation (Figure 12) and a set of nine videos of a user
performing gestures. (Figure 13). We asked the participant to
identify which video matched the gesture. To mitigate learn-
ing effects, we reordered the nine videos between blocks.

Figure 13. Screenshots of a video depicting a node connection gesture.

Figure 14. The average time to completion for identifying a gesture in
Part 1 and Part 2. Standard error bars are shown.

For each trial, we were interested in only the time spent un-
derstanding the gesture. However, participants would often
spend significant time rewatching and searching videos for
the correct one, after having already understood the gesture.
Thus, we measured time to completion of a trial as the to-
tal trial time minus the video-playing time. We also checked
whether the participant chose the correct video.

Results. The average times to completion (Figure 14 Left)
for identifying a gesture were 23.50s for tablature, 49.25s
for expression, and 110.99s for iOS event-handling (one way
ANOVA F2,22 = 55.37, p < .001; all pairwise comparisons
with Bonferroni correction were also significant). Tablature
was 2.1 times faster than expression and 4.7 times faster than
event-handling. Average accuracies were 100% for tablature,
93.3% for expression, and 95% for iOS event-handling, but
differences were not significant (F2,22 = 1.20, p = .320).

Part 2: Trajectory Gestures
In the second part of the study we asked participants to iden-
tify gestures that use both hit-target attribute and the direc-
tion attribute for specifying trajectory. For each block, we
asked participants to perform three trials of gesture identifi-
cation. In each trial, we presented a gesture and a set of four
images, each depicting the gesture trajectory as red directed
paths drawn on a target. Participants chose which trajectory
would be recognized by the given gesture (Figure 15). As in
the first task, for each trial we checked for correctness and
measured the time of completion.

Figure 15. In Part 2, the participant is shown a gesture and must identify
the matching trajectory.

Results. The average times to completion (Figure 14 Right)
for identifying a gesture were 17.82s for tablature, 35.49s
for expression, and 75.29s for iOS event-handling (F2,22 =
21.30, p < .001; all pairwise comparisons were also signifi-
cant). Tablature was 2.0 times faster than expression and 4.2
times faster than event-handling. All participants had 100%
accuracy rate in identifying the gestures for all three repre-
sentations.

Qualitative Results
In a post-study survey we asked participants to rate the repre-
sentations for ease of comprehension. On a Likert scale of 1
(easiest) to 5 (hardest), the average scores were 1.33 for tabla-
ture, 2.92 for expression, and 4.13 for iOS event-handling. A
Kruskal Wallis test revealed a significant effect of condition
on Likert ratings (H = 26.4, 2df , p < .001). Mann-Whitney
tests showed that all pairwise comparisons were also signif-
icant. When asked which of the three representations they
would most like to design multitouch gestures with, 11 of the
12 participants preferred tablature and the remaining partici-
pant preferred expression.

Discussion
Our results show that users are faster at identifying gestures
in tablature form than in expression or event-handling form.
These results indicate that users can quickly learn and under-
stand gesture tablatures, which suggests users can also more
quickly build and maintain multitouch gestures written in tab-
lature. Our results confirm that tablature is an effective graph-
ical representation for the underlying regular expression rep-
resentation of gestures. Our post-study survey also suggests
that users prefer implementing multitouch gestures with tab-
lature over standard touch event-handling.

Participants generally preferred tablature as they found it ob-
vious how “to express temporal order” of the touches. They
could mime the touch actions as they read the tablature. They
saw similar benefits with regular expressions, but were con-
cerned that the “complexity of the expressions could easily
explode.” In contrast with tablature and expressions, partic-
ipants found it difficult to keep track of the gesture state in
disparate event-handlers, which required “too much jumping
around the code” and “mental book-keeping.” However, par-
ticipants felt by having direct access to touch events, event-
handling is “ostensibly more flexible.”

CONCLUSION AND FUTURE WORK
We have presented Proton++, a system for declaratively spec-
ifying multitouch gestures with custom attributes. We have
implemented five such attributes: direction, pinch, touch area,
finger orientation, and screen location. We also describe
a technique for introducing timing into gesture expressions.
A new attribute notation simplifies authoring gestures with

custom attributes and timing. We show that splitting input
streams by attribute values enables recognition of multiple
simultaneous gestures. Finally, our user study suggests that
gesture tablatures improve gesture comprehension over ges-
ture expressions, and both representations are easier to under-
stand than procedural event-handling code.

There are several directions for future work. First, as the
number of gesture-based input technologies increases, stan-
dard event-handling approaches to recognizing gestures can-
not scale. Many of these devices also report multiple streams
of parallel events. Multitouch devices report multiple fingers;
the Kinect [41] reports multiple joint positions; smartphones
report acceleration and orientation. It may be possible to sup-
port these devices in Proton++ using custom attributes.

Second, expressing variability in the expression can currently
lead to complicated expressions that are difficult to author.
For example, a developer may want to allow more leeway for
performing a certain trajectory, so the user can be less precise
when making strokes. More suitable syntactic sugar could
help to simplify the authoring of such gestures.

In the longer term, we would like to explore how other
formalisms can be used to support developers in authoring
gesture-based interactions.

ACKNOWLEDGMENTS
We would like to thank Lora Oehlberg and Wesley Willett for
their help in making the video. This research is partially sup-
ported by NSF Expeditions in Computing project ExCAPE:
Expeditions in Computer Augmented Program Engineering
and NSF grant CCF-0643552.

REFERENCES
1. Appert, C., and Zhai, S. Using strokes as command

shortcuts: cognitive benefits and toolkit support. Proc.
CHI 2009 (2009), 2289–2298.

2. Apple. iOS.
http://developer.apple.com/technologies/ios.

3. Benko, H., Wilson, A. D., and Baudisch, P. Precise
selection techniques for multi-touch screens. Proc. CHI
2006 (2006), 1263–1272.

4. Bevilacqua, F., Zamborlin, B., Sypniewski, A., Schnell,
N., Guédy, F., and Rasamimanana, N. Continuous
realtime gesture following and recognition. In Gesture in
Embodied Communication and Human-Computer
Interaction, vol. 5934 of Lecture Notes in Computer
Science. 2010, 73–84.

5. Cao, X., Wilson, A. D., Balakrishnan, R., Hinckley, K.,
and Hudson, S. ShapeTouch: Leveraging contact shape
on interactive surfaces. Proc. TABLETOP 2008 (2008),
129–136.

6. Dang, C. T., and André, E. Usage and recognition of
finger orientation for multi-touch tabletop interaction.
Proc. INTERACT 2011 (2011), 409–426.

7. Echtler, F., Huber, M., and Klinker, G. Hand tracking for
enhanced gesture recognition on interactive multi-touch

http://developer.apple.com/technologies/ios

surfaces, 2007. Technical Report, Technische
Universität München - Institut für Informatik.

8. Esenther, A., and Wittenburg, K. Multi-user multi-touch
games on DiamondTouch with the DTFlash toolkit. In
Intelligent Technologies for Interactive Entertainment,
vol. 3814. 2005, 315–319.

9. Freeman, D., Benko, H., Morris, M. R., and Wigdor, D.
ShadowGuides: visualizations for in-situ learning of
multi-touch and whole-hand gestures. Proc. ITS 2009
(2009), 165–172.

10. Gibbon, D., Gut, U., Hell, B., Looks, K., Thies, A., and
Trippel, T. A computational model of arm gestures in
conversation. Proc. Eurospeech 2003 (2003), 813–816.

11. Guiard, Y. Asymmetric division of labor in human
skilled bimanual action: The kinematic chain as a
model. Journal of Motor Behavior 19, 4 (1987),
486–517.

12. Han, J. Low-cost multi-touch sensing through frustrated
total internal reflection. Proc. UIST 2005 (2005),
115–118.

13. Kammer, D., Wojdziak, J., Keck, M., and Taranko, S.
Towards a formalization of multi-touch gestures. Proc.
ITS 2010 (2010), 49–58.

14. Khandkar, S. H., and Maurer, F. A domain specific
language to define gestures for multi-touch applications.
10th Workshop on Domain-Specific Modeling (2010).

15. Kin, K., Hartmann, B., and Agrawala, M. Two-handed
marking menus for multitouch devices. TOCHI 18
(August 2011), 16:1–16:23.

16. Kin, K., Hartmann, B., DeRose, T., and Agrawala, M.
Proton: Multitouch gestures as regular expressions.
Proc. CHI 2012 (2012).

17. Kurtenbach, G. P. The design and evaluation of marking
menus. PhD thesis, University of Toronto, Toronto, Ont.,
Canada, 1993.

18. Lepinski, G. J., Grossman, T., and Fitzmaurice, G. The
design and evaluation of multitouch marking menus.
Proc. CHI 2010 (2010), 2233–2242.

19. Lu, H., and Li, Y. Gesture Coder: A tool for
programming multi-touch gestures by demonstration.
Proc. CHI 2012 (2012).

20. MERL. DiamondTouch.
http://merl.com/projects/DiamondTouch.

21. Microsoft. Surface.
http://www.microsoft.com/surface.

22. Morris, M. R., Huang, A., Paepcke, A., and Winograd,
T. Cooperative gestures: multi-user gestural interactions
for co-located groupware. Proc. CHI 2006 (2006),
1201–1210.

23. Moscovich, T. Contact area interaction with sliding
widgets. Proc. UIST 2009 (2009), 13–22.

24. Newman, W. M. A system for interactive graphical
programming. Proc. AFIPS 1968 (Spring) (1968),
47–54.

25. Olsen, Jr., D. R., and Dempsey, E. P. Syngraph: A
graphical user interface generator. Proc. SIGGRAPH
1983 (1983), 43–50.

26. Ramos, G., Boulos, M., and Balakrishnan, R. Pressure
widgets. Proc. CHI 2004 (2004), 487–494.

27. Rekimoto, J. SmartSkin: An infrastructure for freehand
manipulation on interactive surfaces. Proc. CHI 2002
(2002), 113–120.

28. Rosenberg, I., and Perlin, K. The UnMousePad: an
interpolating multi-touch force-sensing input pad. Proc.
SIGGRAPH (2009), 65:1–65:9.

29. Rubine, D. Specifying gestures by example. Proc.
SIGGRAPH 1991 (1991), 329–337.

30. Scholliers, C., Hoste, L., Signer, B., and De Meuter, W.
Midas: a declarative multi-touch interaction framework.
Proc. TEI 2011 (2011), 49–56.

31. Shneiderman, B. Direct manipulation: A step beyond
programming languages. In Computer, vol. 16(8).
August 1983, 57–69.

32. Swigart, S. Easily write custom gesture recognizers for
your tablet PC applications, November 2005. Microsoft
Technical Report.

33. Wang, F., Cao, X., Ren, X., and Irani, P. Detecting and
leveraging finger orientation for interaction with
direct-touch surfaces. Proc. UIST 2009 (2009), 23–32.

34. Westerman, W. Hand tracking, finger identification, and
chordic manipulation on a multi-touch surface. PhD
thesis, University of Delaware, 1999.

35. Wigdor, D., Benko, H., Pella, J., Lombardo, J., and
Williams, S. Rock & rails: extending multi-touch
interactions with shape gestures to enable precise spatial
manipulations. Proc. CHI 2011 (2011), 1581–1590.

36. Wilson, A. D., Izadi, S., Hilliges, O., Garcia-Mendoza,
A., and Kirk, D. Bringing physics to the surface. Proc.
UIST 2008 (2008), 67–76.

37. Wobbrock, J., Morris, M., and Wilson, A. User-defined
gestures for surface computing. Proc. CHI 2009 (2009),
1083–1092.

38. Wobbrock, J. O., Wilson, A. D., and Li, Y. Gestures
without libraries, toolkits or training: a $1 recognizer for
user interface prototypes. Proc. UIST 2007 (2007),
159–168.

39. Worth, C. D. xstroke. http:
//pandora.east.isi.edu/xstroke/usenix_2003.

40. Wu, M., and Balakrishnan, R. Multi-finger and whole
hand gestural interaction techniques for multi-user
tabletop displays. Proc. UIST 2003 (2003), 193–202.

41. Xbox. Kinect. http://www.xbox.com/kinect.

http://merl.com/projects/DiamondTouch
http://www.microsoft.com/surface
http://pandora.east.isi.edu/xstroke/usenix_2003
http://pandora.east.isi.edu/xstroke/usenix_2003
http://www.xbox.com/kinect

	INTRODUCTION
	RELATED WORK
	Describing Multitouch Gestures
	Leveraging Touch Attributes

	PROTON++ ARCHITECTURE AND NOTATION
	CUSTOM ATTRIBUTES
	Direction Attribute
	Pinch Attribute
	Touch Area Attribute
	Finger Orientation Attribute
	Screen Location Attribute

	SPLITTING THE TOUCH EVENT STREAM
	TIMING
	DESIGNING CUSTOM ATTRIBUTES
	USER STUDY
	Part 1: Basic Touch Event Sequences
	Part 2: Trajectory Gestures
	Qualitative Results
	Discussion

	CONCLUSION AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

